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This paper presents deep reinforcement learning-based synergy between pushing and
grasping systems to improve the grasping performance of the URb robot in a cluttered
scene. In robotic manipulations, grasping an object in a clutter is fundamental yet a chal-
lenging activity for industrial applications. This is because numerous studies focused on
improving grasping performance in cluttered environments using either a grasping-only
policy or pushing and grasping without incorporating a pushing reward. Additionally,
some research has been limited to using similar objects, such as cubes. This paper for-
mulated the mathematical modeling of the universal robot manipulator. The proposed
model involves training two fully-connected convolutional neural networks that transfer
visual observations of the scene to a dense pixel-wise sample of end-effector orientations
and positions for each pushing and grasping action. A fixed RGB-D camera is used to
take the raw images of the scene and generate a heightmap image. Before feeding the
heightmap image to the fully convolutional network, it is rotated by 36 different angles
to generate 36 pixel-wise Q-value predictions. Both pushing and grasping networks are
self-supervised by trial and error from experience and are trained together in a deep
Q-learning algorithm. Successful grasps have a reward of 1, while successful pushes have
a 0.5 reward value. But unsuccessful actions have a reward of 0 value. The proposed
policy learns pushing motions to improve future grasping in a cluttered scene. The ex-
periment demonstrates that the proposed model can successfully grasp objects with an
87% grasp success rate while grasping only policy, no-reward for pushing policy, and
stochastic gradient without momentum is 60%, 71%, and 79% respectively. Further, it
has been demonstrated that the proposed model is capable of generalizing to randomly
arranged cluttered objects, challenging arrangements, and novel objects.

Keywords: Deep reinforcement learning, synergy, robotic grasping, cluttered scene, Q-
value, UR5.

1. Introduction

Robots were created to aid or replace humans by performing tedious and risky
jobs that humans either do not want to undertake or are unable to execute due
to physical limits imposed by harsh conditions [1]. Robotic arms are automated
electromechanical devices designed to carry out specific tasks [2]. Applications of
robotics are widely available in our daily life ranging from small household robots
to large manufacturing industries.

The Universal Robots company product, UR5 a six degree of freedom is widely
used in most research areas due to their lightweight, speed, easy to program, flex-
ibility, and safety. All of its six revolute joints contribute to the transformational
and rotational movements of its end effector [3].
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Artificial intelligence (AI) has become a critical component in the subject of
robotics. The definition of AI varies depending on its application and field, but
[4] defines it as the creation of an intelligent agent that can interact with the
environment and take actions to maximize its success, in which the agent acts
intelligently to reach the optimal result.

A Dbiologically inspired engineering model, artificial neural network (ANN) con-
sists of numerous single units called artificial neurons that are coupled with coef-
ficients (weights) to form the neural structure [5]. It contains devices with many
inputs and one or more outputs. An artificial neural network is consisting of a large
number of fundamental processing pieces that are linked and layered together.

Deep neural network learning is a well-known field in the family of machine
learning, with its excellent achievement in a variety of domains ranging from classi-
cal computer vision tasks to many other practical applications. Deep-learning based
methods have achieved comparable to, and in some cases outperforming human ex-
pert performance. Deep learning has enhanced data processing, making decisions,
data analyzing and manipulation [1].

A type of machine learning in which the UR5 learns optimal behavior through
experience by trial-and-error interactions with the environment in order to maxi-
mize its performance is called reinforcement learning. A reinforcement learning UR5
is not informed which actions to take, instead, it must try them all to see which
ones offer most reward. It chooses behaviors based on previous experiences as well
as tries now options with the goal of maximizing the total reward [6].

The hybrid between deep learning and reinforcement learning is deep reinforce-
ment learning. The robot learns from its actions similar to the way humans can learn
from experience. The robot learns complex features by trial-and-error interactions
with the environment so as to optimize its performance over time.

A robotics problem is formalized by defining a state and action space, and the
dynamics which describe how actions influence the state of the system. The state
space includes internal states of the robot as well as the state of the world that is
intended to be controlled. Quite often, the state is not directly observable—instead,
the robot is equipped with sensors, which provide observations that can be used
to infer the state. The goal may be defined either as a target state to be achieved,
or as a reward function to be maximized. We want to find a controller, (known
as a policy in reinforcement learning), that maps states to actions in a way that
maximizes the reward when executed [7].

2. Related works

For effective and efficient object manipulation, an industrial robot manipulator
must be able to sense and interact with its surroundings. Despite extensive re-
searches, robotic grasping in a cluttered environment remains a difficult challenge,
as do many other robotic manipulations. Using deep reinforcement learning, several
distinct approaches to grasping in a cluttered environment have been developed in
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recent years.

A scalable visual grasping system [8] proposes a robotic grasping strategy based
on the model-free deep reinforcement learning, named Deep Reinforcement Grasp
Policy (DRGP). The proposed system requires little training time and limited sim-
ple objects in simulation but generalizes well to novel objects in a real-world envi-
ronment. A perception network employs a convolutional neural network to translate
visual data to grasp action in which dense pixel-wise Q-values indicate the position
and orientation of the robot’s primitive action. Grasp success rate reaches 93% on
a single arrangement unknown object, 70% on six unknown objects in a crowded
situation, and 62% on seven objects in crowded situations. The methodology is
based on only grasping policy as a result, it fails to perform well in a cluttered
environment. With out a non-prehensile action (pushing), it is difficult to grasp an
object in a dense scene.

In [9], a robotic grasp-to-place method that can grasp objects in sparse and clut-
tered scene was presented. The main achievement of this study is that it can handle
both picking and placing using raw RGB-D images and an explicit framework. The
RGB-D camera was utilized to produce heightmaps at the robot grasp-workspace
by capturing RGB-D images of the scene and 3D point cloud information. The
heightmap is rotated by 36 different angles before being fed into a dense connected
convolutional network (DenseNet121) to produce 36 pixel-wise Q-value maps pre-
dictions. The suggested model has 77.4% grasp efficiency and 74.3% grasp success
rate, respectively and 98.42% place success rate. The paper proposes a pick and
place robot in a cluttered environment, but it failed to provide a solution for better
grasping an object in the cluttered environment. The grasping process is not en-
hanced by the non-prehensile (push) action which resulted in low grasping efficiency
and grasp success rate of an object. The model also failed to provide tests for novel
objects.

In [10], a deep reinforcement learning-based technique for tackling the robotic
grasping issue using Visio-motor feedback was proposed. The suggested system is
a visual servoing method that perceives the environment including the objects of
interest using a multi-view camera setup. The model is made up of observed data
from the overhead depth camera and wrist RGB camera, as well as current motor
position, all of which are sent into Grasp-Q-Network, which yields grasp success
probability. The model tested in both a Baxter Gazebo simulated environment and
on a real robot. Even though adopting a multi-view model increases grasping accu-
racy in comparison to a single-view model, the training experiment was performed
only with three regular shaped colored objects; sphere, cylinder, and cube. This
study highlights the efficacy of reinforcement learning in sparse settings, though it
lacks detailed exploration in highly cluttered scenarios.

The paper presented in [11] used both Schedule for Positive Task (SPOT) reward
and the schedule for Positive Task (SPOT)-Q reinforcement learning algorithms,
which resulted in efficient learning multi-step block manipulation tasks in both sim-
ulation and real-world environments. The Schedule for Positive Task (SPOT) incen-
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tive system works on the principle that actions that advance overall task progress
rewarded proportionally to the amount of progress made while actions that reverse
progress are not rewarded. By recording stack height or row length, SPOT can
calculate task progress (TP). The heightmap is rotated by 16 distinct angles which
is then fed into a Dense Network (DenseNet-121) to yield predictions of 16 pixel-
wise Q-value maps. The paper achieved a grasp success rate of 76% in simulation
and 69% in real training on stack of 4 cubes. The proposed system failed to give
a reward for pushing action that leads to lower grasp success. As successful push-
ing actions are not rewarded, the contribution of pushing for improving grasping
is minimum. The proposed system failed to give a reward for successful pushing
action that leads to a lower grasp success. Without a push reward, the robot will
not learn push policies.

To grasp unseen target object in a clutter trained by self-supervision in sim-
ulation was presented in [12]. The method employed three fully connected convo-
lutional neural networks, DenseNet-121, for feature extraction of color, depth and
the target object, which demands high computational cost. It has low grasping suc-
cess rate and performs more motion. This is because it seeks to grasp the object
directly without separating the objects. It tends to push the cluttered environment
after multiple continuous grasp failures. Grasping is also limited to a target, goal
oriented single object.

The paper presented in [13] employs deep Q-learning for gripping policies and
pushing for applications involving crowded. Through model-free deep reinforcement
learning, this research proved that it is possible to uncover and learn synergies be-
tween push and pick in a clutter. Before feeding the heightmap image into the
DenseNet-121 network to generate 16 Q-value predictions, it is rotated in 16 dif-
ferent angles. The model grasping performance for the developed system achieved
83% over 2500 episodes. The paper’s key weakness is that it repeatedly pushes an
object out of the workspace because pixel-wise depth heightmap image differencing
(PDD) approach is not employed to assure success push. A second limitation is that
the system has trained and tested with only blocks.

3. Material and methods
3.1. Experimental setup

The experiments were conducted using a UR5 robotic arm from Universal Robots,
equipped with a two-finger parallel gripper. An RGB-D camera was fixed in the
environment to capture the scene and generate height map images. These images
were used as inputs for the neural networks.

The experimental setup involves using a URb5 robotic arm to test and validate
the proposed robotic manipulation model. The UR5 robot is a versatile and widely
used industrial robot known for its precision and flexibility, making it ideal for
tasks involving grasping and manipulation in cluttered environments. The setup
is designed to evaluate the model’s performance in various scenarios, including
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randomly arranged clutter, well-ordered configurations, and interactions with novel
objects.
Hardware components

(1) URb5 Robotic Arm:
Model: Universal Robots URS5.
Degrees of Freedom: 6.
Payload: 5 kg.
Reach: 850 mm.
Repeatability: £0.1 mm.
(2) End Effector:
Type: RG2 parallel jaw gripper.
Grip Force: 20-235 N.
Grip Stroke: 0-85 mm
(3) Vision System:
Camera: Intel RealSense Depth Camera D435.
Resolution: 640 x 480 at 30 fps.
Depth Range: 0.2-10 m.
(4) Computing System:
Processor: Intel Core i7.
GPU: NVIDIA Quadro P2000 Intel(R) Xeon(R)
RAM: 32 GB.

Software Components

(1) Operating System: Ubuntu 18.04 LTS.

(2) Robotics Middleware: Virtual Robot Experimentation Platform (V-REP).
(3) Control Interface: CoppeliaSim VR interface with the UR5 robot.

(4)

(5)

5

Simulation Environment: CoppeliaSim simulation.
Machine Learning Framework: PyTorch for model training and deployment.

Experimental Procedure

(1) Environment Setup:

e The robot is placed in a controlled test area with a flat, non-reflective
surface to minimize visual noise.

e Objects for manipulation are randomly placed within the robot’s
workspace to simulate cluttered environments.

e A mix of known and novel objects is used to evaluate the model’s
adaptability.

(2) Calibration:

e The vision system is calibrated using standard calibration techniques
to ensure accurate depth perception.



Journal of Computational Science & Data Analytics (©) AASTU Press

34  Shiferaw, B. A. et. al.

Fig. 1. UR5 robotic arm [14]

e The end effector is calibrated to ensure precise gripping force and

stroke control.
(3) Task Execution:

e The robot is programmed to perform a series of grasping tasks, start-
ing with randomly arranged clutter.

e The tasks are repeated with well-ordered object configurations and
novel objects to test the model’s adaptability and performance con-
sistency.

e Each task involves identifying the object, planning a grasp, and exe-

cuting the grasp.

3.2. UR5 mathematical modeling and deep reinforcement
algorithm

3.2.1. UR5 mathematical modeling

Six revolute joints make up the UR5 robotic arm. Base, Shoulder, Elbow, Wrist1,
Wrist2, and Wrist3 are the names of these joints. The shoulder and elbow joints
rotate perpendicular to the base joint. Long linkages connect the shoulders, elbows,

and base joints [3].

3.2.2. D-H Representation of Forward Kinematic Equations of URS

The URD5 robot’s kinematics can be studied using the D-H representation. To effi-
ciently control the end-effector with regard to the base, the relationship between the
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coordinate frames attached to the end-effector and the base of the UR5 robot must
be discovered. This is accomplished by recursively describing transformations of the
coordinates between the coordinate frames connected to each link and yielding an

overall description.

h X - — ds
Zg - - :jninl Sd Joint4 -
Link 3 as
Z5 «——Joint 3 ’ <
| a-
Link 2
> — 1
Joint 1
Fig. 2. Schematic and frames assignment of URb5
Table 1. D-H parameters of the UR5
LZTLk‘, 7 a; Q5 dz 01
1 0 w/2 0.0891 0,
2 0.425 0 0 0
3 0.39225 0 0 03
4 0 /2 0.10915 04
5 0 —m/2 0.09456 05
6 - - 0.0823 s

Using the definition of the transformation matrix of a robotic arm, the trans-
formation matrix from the base to the end effector of the UR5 robot is in the form
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of:
[Tc10 s1 0 7 [c2—520—0.425¢27 [¢3 —s3 0 —0.39¢3
s10—cl O s2 ¢2 0—0.425s2 s2 ¢2 0—-0.39s3
01 0 0.08 0 01 0 0 01 0
0T(01) 3T(02) 3T(05) | LOO0 O 1 ] L0 0 0 1 | 0 0 0 1 (1)
3T(04) 3T(05) 3T(06)| | [c40 s4 0 ] [c5 0 —sb 0 c6—-s60 0
s40—c4 O sb 0 ¢b 0 s6 ¢c6 0 O
01 0 0.109 0 —1 0 0.09465 0 0 10.0823
L LOO O 1 ] L0 0O 0 1] 0 00 1

So, the transformation of the UR5 robot from the base to the end-effector is the
post-product of all the six transformation matrices.

nX OX a‘X pX
OT(61, 05,05, 04, 05, 06) = VT (01) 5T (02) 52T (03)3T (04) 2T (05) 2T (05) = Ey ‘;y Zy iy (2)

0001

The forward kinematics of the UR5 robot orientation would be obtained from
the first three columns of the 97 in Eq. (2) as:

Ny Ox ax S1585C6 + C1C€234C5C6 1 C1823456 —C15234C6 — S15556 — C1C234C556 S1C5 — C1C234
Ny Oy &y | = [ $1€234C5C6 — C155C6 — S1823456 —S15234C6 — S1C234C556 1 C15556 —C1C5 — S1C234 (3)
Ny Oz Ay $234C5C6 + 23456 C234C6 — S234C556 —523485

And the forward kinematics of the robot position would easily be obtained from
the fourth column of the 37" in Eq. (2) as:

px=dsC18234+d4s1 —dgC15234+a2¢1 Ca+dsCs51+azciCaCz —a3C15253
Py=d5515234—d401 —dgs1ca34+azcac) —dgC1S5+a3cac3s1 —azsiS283 (4)
p,=d1 —dgs5S234 +azs23+assa—dsCass

Where, 8234 stands for the sin(f2+605+604) and ca34 stands for the cos (f2+603+6y) .

3.2.3. Inverse Kinematics of the URS

The goal of inverse kinematics is to discover the joint angles vectors that will cause
the end effector to achieve a particular goal state. The inverse kinematic equation
calculates the joint angles 6, — 65 based on a desired position and orientation of the
end-effector, specified as the transformation 7. To describes position and orien-
tation of the URbS robot manipulator in the inverse kinematics solution, all angles
are restricted as [9%, cee Qé] T e [0; 27), such that satisfies Eq (2). In this work,
geometric method was used to solve the inverse kinematics of the UR5 robot.
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Fig. 3. Geometry of the URS for finding 601

The wrist, P5, is considered from frame 0 and frame 1, respectively, in order to
determine #;. The rotation from frame 0-to-1, 61, should, intuitively, equal the sum
of the rotations from 0 to 5 and 5-to-1. The angle ¢; can be found by examining
the triangle with sides 0Pby and 0P5z.

m) (5)

The angle @9 is found by examining the rightmost triangle with ¢9 as one of
the angles. Two of the sides have lengths d4 and [0P5xy|:

— d4 _ d4
= 4cos ! = Fcos! 6
v2 (|0P5xy|) ( (0P5y)? + (0P5z)2) ©)
The desired angle 61 can now be found simply as:
dy

_1(0P5y) + cos_l(

= + +7T—tan
1= @1 T P2 = 0P5x

2

JOP5y) £ 0Ps)
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Fig. 4. URS5 robot configuration to determine 05

The way to figure out 05 now is to notice that 1Fs, is exclusively dependent on
0s. In Fig.4, y1 can be traced backwards to see that 1P, is given by:

].Pﬁy = —d4 - d6008(05) (8)

The y-component of 1P, 1Fs, can also be expressed by looking at 1Fs as a
rotation of 0P around z.

1P, cl s10] [0Pss
1Ps = RT.0Ps = |1Ps, | = | —s1 ¢l 0| [0Ps, (9)
1Ps, 0 01] |0Fs,
Using the second row of Eq (9),
1P6y = —(SI)OPGZ + (Cl)OPGy (10)

Equating Egs (8) & (10),

dy — s10Ps; + (Cl)OPGy
dg

cos(05) =

dy — s10Ps,; + (61)0P6y
11
- ) )

The two solutions for 65 indicates to moving the wrist “down” or “up”.

05 = +cos™(
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(a) Polar angles for —6Y]

(b) Reference view of the relevant frames

Fig. 5. Geometry used to determine azimuth angle 6¢

The axis —6Y; expressed in spherical coordinates with azimuth —0g and po-
lar angle 65. 6Y7 is denoted as y; in the Fig.5. —6Y7 is converted to Cartesian
coordinates by transforming it from spherical coordinates.

6Y1 = [~s5c6  s5s6  —c5|T (12)

Tt could be identified that 6Y] is given as a rotation of 6y in the (z,y) plane of
frame O.

—6X0zsin(61) + 6Ypcos(6;)
6Y, = —6X¢sin(f1) + 6Ypcos(6,) = 6Y1 = | —6Xqysin(01) + 6Yo,cos(01) | (13)

—6X,sin(01) + 6Yp.cos(0;)
From Egs (12) & (13):

—55¢6 —6X0zsin(61) + 6Ypzcos(0:)
5556 | = | —6Xoysin(6r) + 6Yoycos(61) (14)
—ch —6X,sin(01) + 6Yp.cos(0;)

Using the first and the second rows of Eq (14):

6 — 6X0zsm(01)8; GYOzCOS(al) (15)

_ 6Ypycos(6) — 6Xgysin(0:)

1
s6 o5 (16)
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Hence

_16Ypycos(01) — 6Xoysin(6r)

O =t
6= tan 6Xozsin(f1) — 6Yp,cos(61)

(17)

If the denominator s5 = 0, then 6 is undetermined. As a result, as illustrated
in Fig.5. (b), the joint axes 2, 3, 4, and 6 are aligned. Because the axes 2, 3, and 4
can rotate the end-effector around Zg without moving it, the 6" joint is no longer
needed. In this situation, g can be set to any number. The remaining three joints
(2, 3, and 4) are now examined to find the remaining angles 65,03, 4.. Their joint
axes are parallel.

Fig. 6. Joint 2, 3, and 4 together constitutes a 3R planar manipulator

As 9T, 3T, and 3T are all known at this point, ;7 can be determined easily.
The above picture shows this transformation in the x; z-plane of frame 1. Using the
cosine law;

1Py, |? = (—a2)? + (—a3)? — 2(—a2)(—a3)cos(p3) (18)

(02)? + (a3)? — 1Py |?
3(a2)(a3) ) (19)

From the diagram shown in Fig.6 above,

@3 = +cos 1 (

(a2)? + (a3)? — |1 Py, |2

03 =7 — o3 =7+ cos}( 3(a2)(a3) ) (20)
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The two answers refer to ”elbow move up” and ”elbow move down,” respectively.
When the distance to the 4*" joint is greater than |a2 + a3| or less than |a2 — a3,
there are no solutions. When a2 = a3, there is a singularity, when 63 = 7, making
05 arbitrary. 65 can be found by inspecting the Fig.6 above:

1Py,
1P4x

) (21)

o1 = tan™Y(

And also using sine law,

—a3sin(ps

1P| ) (22)

o = sin~(

And sin (p3) = sin (7 — 03) = sin(63)
Then, 05 can be expressed as;

1, 1P _,,—a3sin(03)
03 = 1 — o = tan™H(——=) — sin”(———— 23
2 ®1 P2 an ( ]-P4z ) s ( |]-P4zz| ) ( )
The angle 6, is the angle from X3 to X; measured about Z,.
From the transformation matrix, 37, 3X:
3X
0y = tan "' (=22 (24)

3X4m

3.2.4. Dynamic Modelling of the URS

The dynamical model of UR5 is represented by using the Euler-Lagrange method.
The difference between the manipulator’s kinetic energy K and the potential energy
P is the Euler-Lagrange. The Lagrangian L can be given by:

L=K-P (25)
Where, the kinetic K and the potential energy P of the UR5 robot are:

6
1 T ‘T 1.0
K=3 Zl(mivi v; + 6T 1,6) (26)
6
P= ZgTrcimi (27)
i=1

Where, m; is the mass of link ¢, inertial matrix is I; calculated in a coordinate
frame parallel to frame ¢ with its origin at the center of mass, v; is the linear velocity
and 6; is the angular velocity, g is inertial frame vector in the direction of gravity
and the vector r.; gives the center of mass of link ¢ coordinates.
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Having the Lagrangian of the UR5 is, equations of motion can be determined
using the Euler-Lagrange equation, which is shown as follow:

4oL, oL
dt*9(9);,”  96; —

(28)

Where, 7; is the sum of external torques for a rotational motion and i=1, 2...6,
0; = 2.
According to Lagrangian method, the following equation can be used to deter-

mine the dynamic model of the UR5 robot.

M(6)8 + C(6,0)0 + G(0) + f.,0 + F.sign(d) = Br,, (29)

Where,f = [01,0s,...,06]7 are independent joint coordinates vector, M (6)is
the symmetric positive definite inertial mass matrix of the system, C (9,9) is the

Coriolis and centrifugal terms matrix, G () is the gravity terms vector while 7 is
the control vector. Vector 7, includes motor torques, and B indicates distribution
force matrix. The vector of Coulomb friction forces F'¢, as well as viscous joint
friction coeflicients diagonal matrix f, [15].

3.2.5. URS5 Trajectory Planning

Consider one of the joints that is 6; at the start of the motion segment at time ¢; and
that want to change to a new value of 6y at time ¢;. One method is to design the
trajectory with a polynomial so that the initial and final boundary conditions match
what is already known, specifically that §; and 0; are known and the velocities and
the accelerations at the start and end of the motion segment are zero or other
known values. The fifth order trajectory can be given by:

9(t) =co+cit+ 62t2 + C3t3 + C4t4 + C5t5 (30)
0(t) = ¢1 + 2¢at + 3est? + degt® + Sest? (31)
0 (t) = 2¢o + 6¢3t + 12¢4t% + 20¢5t° (32)

Where, ¢y, c¢1, c2, c3, c4, and cs are constants that has to be determined
based on the boundary conditions, 6 (t), 6 (t), and 6 (t) are the angular position,
velocity and acceleration of the joint respectively.
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3.3. Data collection

The dataset consisted of various objects including toy blocks of different shapes and
colors, as well as novel objects like bottles, bananas, screwdrivers, cups, forks, and
adjustable wrenches. The objects were arranged in three different configurations for
testing:

e Randomly arranged clutter.
e Challenging well-ordered configurations.
e Novel object configurations.

The state s; of the proposed system is represented as an RGB-D heightmap im-
age of the scene at time t. The RGB-D images from a fixed-mount RGB-D camera
is taken, project the data into a 3D point cloud, then back-project orthographically
upwards in the gravity direction using a known extrinsic camera parameter to cal-
culate both color (RGB) and height-from-bottom (D) channels heightmap images.
The RGB-D camera’s additional depth information is critical for robots that inter-
act with a three-dimensional environment. The working environment area covered
a 448 by 448 mm tabletop surface.

Working with raw heightmap pictures, which are 224 by 224 pixel RGB-D im-
ages, can be time- consuming and memory-intensive [16]. Normalization of input
data is a critical step that assures that each input heightmap has a consistent data
distribution. Convergence of the deep neural network is accelerated as a result of
this. heightmap normalization in a heightmap image is accomplished by subtracting
the mean from each pixel and dividing the result by the standard deviation.

The input heightmap is rotated by 36 orientations 6, each of which corresponds
to a push or grasp action with distinct products of 10° angle from the original state,
before being sent to the densnet-121 to generate a set of 36 pixelwise Q-value maps
to make learning-oriented pushing and grasping actions easier.

3.4. Deep Reinforcement Learning

In deep reinforcement learning, the UR5 uses a deep neural network to learn com-
plex features and decides on its own what action to take by interacting with its
environment. The URS5 strives to discover the best decision-making method that
will allow it to maximize the rewards acquired over time through its experience.
As it allows the interaction process of reinforcement learning to be defined in
probabilistic terms, the Markov Decision Process serves as the theoretical founda-
tion for reinforcement learning. Representing all possible states that the UR5 could
find itself in by the set S = {s1, sa2, s3, ..., s,} and the set of actions that the
URS can execute to the system to translate from on state to the next state by
A = {a1, as, as, ..., ap }is a common practice. At a given time ¢ the UR5
chooses and performs an action a; based on the optimal policy, 7*(s;) and will
cause the state to change from s; to s;4+1. In response to this transition of state
the environment gives a reward r; to the URb5. After receiving the rewardr;, the
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URD is in state s¢yijand performs the next actionasy 1. This action will cause the

environment to change to state s;1o. And that will be followed by the environment
granting the robot a reward r;; 1, this process is repeated for each time step.

| g
\-
> &

¥ “
URS A ction, at
Reward, 1;
State, st
Environment

T 41
-_

Sr+1

Fig. 7. Deep Reinforcement Learning (DRL) UR5-Environment interaction

The deep reinforcement learning problem is used to find the best policy
(m* : 8 — A) that maximizes the expected sum of future rewardR; = ZiT:t Tty
for performing an action over time horizon T and the discount factory € [0,1]
which accounts for degree of the importance of the future rewards at the present
state. Deep Q-learning was used to train an optimal policy 7*(s;) that choses
action from A = {a1, a2, as, .., an } that maximizes a state-action value
function Q(s¢, at), a measure of the reward for performing action a; in state s; at
time t.

The equation to determine the new update Q-value for state-action pair (s,a) at
time t is given by the Bellman equation;

Q (s0,a0) ™" = Q (51, a) + & (ry + yargmaz,Q (si41,a) — Q (s, ar)) (33)

where, a is a set of all future available actions, « is the learning rate (0 < a < 1),
Q (s, at) is the current Q-value that has to be updated, r; is an immediate reward,
argmaz@ (si+1,a) is an estimation of the optimal future reward value.
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The two important aspects of the DQN algorithm, as proposed by [16], are the
use of a target network and experience replay. In this work, the target network ¢’,
which is parameterized by 6~ and is the same with the normal DQN except the
parameters are updated every C time steps from the DQN, was used. So that at
every C' step, # = 0~ and kept fixed on all other steps. The target used by DQN at
the it" layer, is then:

yi =i +ymazx, Q- (Si+1,a) (34)

Minimizing the temporal difference error d; of Qg (s¢, at) to a fixed target value
between individual updates, y; is the objective of the learning. Therefore, the tem-
poral difference d; can be given by;

0 = |re +ymax, Qo (5¢41,a) — Qg (¢, az) (35)

The main idea of the experience replay mechanism is that during the DQN
training process, the UR5 saves every experience tuple e; at each time pointt,
et ={st,ar,rt, Sty1 - The experience e; would be used as training data to
update the DQN weights and the biases. The experience tuple is stored in the
replay memory M of length N, where M = {e1, e3, e3,..., en } . A stochastic
rank-based prioritization for prioritizing experience was employed in this study so
that significant transitions might be replayed more frequently and so learned more
effectively. In particular, the probability of sampling transition ¢ from the replay
buffer of size N is defined as;

D;~

T =N A a
Zk:o Dy~
where D; > 0 denotes the priority of transition i, and the exponent o denotes

p (i) (36)

the amount of prioritizing employed. As a result, this value determines how much
prioritization is employed. In particular, the transitions ¢ in the replay buffer is
ranked by the absolute value of temporal difference (TD) error.

D; = 1/rank(1) (37)

where, rank(i) is the rank of the transition ¢ in the replay buffer sorted according
to the temporal difference error ¢;.

3.4.1. State representation

The state sy of the proposed system is represented as an RGB-D heightmap image of
the scene at time ¢. The RGB-D images from a fixed-mount RGB-D camera is taken,
project the data into a 3D point cloud, then back-project orthographically upwards
in the gravity direction using a known extrinsic camera parameter to calculate both
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color (RGB) and height-from-bottom (D) channels heightmap images. The RGB-D
camera’s additional depth information is critical for robots that interact with a
three-dimensional environment. The working environment area covered a 448 by
448 mm tabletop surface.

a) b)

Fig. 8. (a) RGB color image and (b) RGB heightmap

Working with raw heightmap pictures, which are 224 by 224 pixel RGB-D im-
ages, can be time- consuming and memory-intensive [16]. Normalization of input
data is a critical step that assures that each input heightmap has a consistent data
distribution. Convergence of the deep neural network is accelerated as a result of
this. heightmap normalization in a heightmap image is accomplished by subtracting
the mean from each pixel and dividing the result by the standard deviation.

The input heightmap is rotated by 36 orientations 6, each of which corresponds
to a push or grasp action with distinct products of 10 ° angle from the original
state, before being sent to the densnet-121 to generate a set of 36 pixelwise Q-value
maps to make learning-oriented pushing and grasping actions easier.

3.4.2. Densely Connected Convolutional Neural Networks

The deep Q-function was modelled as two feed-forward fully connected convolu-
tional networks (FCNs) for each motion primitive behavior; one for pushing net-
work, (), and another for grasping networks, (), by extending the vanilla deep Q-
networks (DQN) [16]. It has recently been demonstrated that to train deeper, more
accurate and more efficient features, the connection between layers next to the in-
put and close to the output of the convolutional network should be shorter [17].
The normalized and rotated heightmap is fed to the densenet-121 network.
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32

5656164
5656132

56x56x128
BN.RelLU
3x3 conv, k features

Growth factor, k
1x1 conv, 4%k features

Fig. 9. A deep DenseNet-121 with four dense blocks

The DenseNet-121 is used in both the push and grasp neural networks. The
depth and color heightmaps are concatenated in channel-wise order after the
DenseNet-121 network, followed by two additional similar blocks with batch normal-
ization, nonlinear activation function (ReLU), and convolutional layers for feature
embedding. The pixel-wise state-action prediction value Q(s¢, a¢) then bilinearly up
sampled. The Q-value guess at pixel p depicts the expected reward of performing
primitive action at 3D position ¢(z,y, z,6) where q maps from pixel p € s;, and
bilinear upsampling creates the same heightmap size and resolution as s; of each
dense 36 pixel-wise map of Q-values [18].

3.4.3. Pushing Primitive Actions

The beginning points of a 10 cm push and the push direction in one of k=36
orientations are denoted by the push primitive actioniy,, ¢(z,y, z,6). The goal of
pushing primitive action is to learn pushes so that subsequent grasps can be made
with as few steps as feasible. Among all possible Q-values of the push Net (), an
action with maximum Q-value is selected as a push action. The tip of a closed
two-finger gripper is used to physically execute the push action in this thesis.

push action, apysn, = argmaxQpyush (St, ar ) (38)
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Fig. 10. DenseNet-121 Layers

Layers Output DenseNet-121
layer
Conwvolution 1122112264 | BN, ReLU, 7x7 conv with stride=2, 3x3 Zero
padding
Pooling 56x56x6 3x3 maz-pooling with stride=2
Dense Block 1 (DB1) | 562562256 | BN, ReLU, [1z1 conv, 4k fatures]z6, BN,
(6-layers) ReLU, [3z3 conv, k fatures]x6
Transition Layer 1 28x28x128 | BN, ReLU, 1zl conv with 4%k fatures, 2z2
average pooling with stride=2
Dense Block 2 (DB2) | 28x28z512 | BN, ReLU, [lzl conv, 4x*k fatures|z12
(12-layers) BN, ReLU, [323 conv, k fatures]x12
Transition Layer 2 142142256 | BN, ReLU, 1x1 conv with 8 xk fatures, 2z2
average pooling with stride=2
Dense Block 3 (DB3) | 14x14x1024| BN, ReL U,
(24-layers) [lz1 conv, 4k fatures|x24, BN, ReLU,
[323 conv, k fatures]z24
Transition Layer 3 TxTr512 BN, ReLU, 1z1 conv with 16 xk fatures, 2x2
average pooling with stride=2
Dense Block 4 (DBY) | Tx7x1024 BN, ReLU, [lzl conv, 4*k fatures]z16,
(16-layers) BN, ReLU, [323 conv, k fatures]x16
Output Layer 1x1x1024 7x7 global average pooling
Qp(sp a) max Q'Tst,a[)
FCNpushing(®p)
DenseNet-121

Bad push

Best push

Fig. 11. Push Net (0,) Q-values
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3.4.4. Grasping Primitive Actions

Similarly, among all possible Q-values of the grasp Net ),, a grasp action with
maximum Q- value is selected as best grasp action.

grasp action, Ggrasp = argmaxQ grasp (St ar ) (39)

Qg(5e.ar) max Qg (s, a,)

FCNQ'“GSPI“Q (QE)
DenselNet-121

Bad grasp Best grasp

Fig. 12. Grasp Net (04) Q-values

The predicted Q-values are represented as a heatmap, with hotter locations in-
dicating higher Q-values. White cycle in the heightmap image highlights the high-
est Q-value map, which correlates to the best grip action. ¢(x,y, 2, 0) signifies the
median position of a top-down parallel-jaw grab in one of k = 36 orientations in
grasping primitive action. Both fingers attempt to move 3cm below ¢(z, y, z) during
a grip attempt before closing the fingers at the object’s point of grasp.

Action selection strategy is based on the maximum of the primitive motions (FCNs)
04 and (,. The primitive action in the proposed model is the maximum of Q-values
prediction of the best push action and best grasp action Q-value predictions.

a; = argmax [MmaxQpushing (St; at) , MaXQgrasping (St,at) | (40)

At each iteration of the training session, the Huber loss function to train Q-
learning on FCNs is employed [13]. For the i iteration, the Huber lose function
can be written as follows:

- 2 . . LT
%(Qei (sira;) — ;% ) if ‘Qel (sia:) —y% | <1,

) (41)
‘Qai (s5,a;) —y;% ’ -3 otherwise,

H(losei) =
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where, y; = 7 + ymaz,Q (S¢+1,a), 0; denotes the parameters (weights and
biases) of the neural network at the ‘" iteration, §; signifies the target network
parameters between individual updates.

Qplsea:) maxQy,(s,. a;)

r» FCN(@,)

224x224x3

> FCN(@,) —|

Ou(sa)  maxQy(sea)

Grasp

Is push

Is grasp

success?
success?

Y Y

‘ Reward=0 ‘ ‘ Reward=0.5 ‘

! |

Reward=1

Fig. 13. Framework of pushing and grasping objects

The hyperparameters are tuned by an extensive technical trial and error exper-
imentation in simulation and the optimal learning rate (a) of 107*, a momentum
coefficient (3) of 0.9, and a weight decay factor (\) of 27° to train fully connected
convolutional neural networks are selected. During the training session, the robot
learned exploration using the epsilon greedy (e-greedy) policy, which started at 0.5
and was decreased to 0.1 via exponential decay. The robot begins by exploring more,
and as it gains more experience via trial and error, it begins to exploit more what
it has learned. And future reward discount factor was set to a fixed amount of 0.5.
Over the training iterations, the gripping action’s learning performance improved
incrementally.

3.4.5. Reward modeling

A successful grasp is assigned a reward value as shown below:

Ry (s, st41) =1 (42)
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Grasp success is confirmed when the antipodal distance between gripper fingers
after a grasp attempt is greater than the threshold value of the antipodal distance.
While for a successful push, the reward value is modeled as:

Rp (St, St+1) =0.5 (43)

If there is a detectable change in the environment, the push is successful. The
pixel-wise depth heightmap image differencing approach subtracts data from the
previous depth heightmap image from those of the current depth heightmap image,
to calculate the change sensed in the. Pixel-wise depth heightmap image differencing
(PDD) is calculated by subtracting the current state’s depth heightmap image from
the previous state’s depth heightmap image [18]. That is:

PDD =" |s; — 511 (44)

The robot’s workspace was examined with various threshold values and discov-
ered that this may be determined by trying different experiments. Increasing the
threshold value implies that the robot can detect if there is only a considerable
change. When the threshold value is reduced, the robot can detect even minor
changes that the human eye might miss. If the pixel-wise depth heightmap image
differencing (PDD) exceeds the threshold value, a change observation is evaluated
with the acquired threshold value 7:

change detected = Z lst — se—1| > 7 (45)

In general, if the PDD value is greater than the threshold value (PDD > 7) and
the grasping attempt is successful, a change has occurred. Aside from that, there
has been no change in the workspace.

3.4.6. Training scenarios

The proposed model experiment was performed using DELL E2417H Desktop with
NVIDIA Quadro P2000 Intel(R) Xeon(R) E-2124 CPU @3.30GHz with Ubuntu
18.04 LTS operating system, Python, PyTorch, OpenCV and V-REP.

VREP is a general-purpose robot simulation framework that is versatile, scal-
able, and powerful. Kinematics, dynamics, collision detection, motion planning, and
mesh-mesh distance calculation modules are among the various calculation mod-
ules in V-REP [19]. V-REP was utilized in conjunction with Bullet 2.83 Physics, an
open-source collision detection, soft body, and rigid body dynamics package [20].
It’s used to identify collisions, resolve collisions, and resolve other limitations.

In this investigation, a UR5 robot with an RG2 parallel jaw gripper was used.
The robot uses a stationary RGB-D camera to observe its surroundings. With a
pixel resolution of 640 x 480, the camera gathers picture and depth maps.
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During training, ten objects with various sizes and colors are dropped at random
into a 448x448 mm robot’s workspace/environment. By trial and error, the robot
learned to perform either a grip or a push action based on the highest Q-value.
Following the removal of all objects from the workspace, a new batch of 10 objects
was dropped at random for additional training. Data was collected constantly until
the robot had completed 3000 training iterations.

3.4.7. Testing scenarios

Randomly arranged, challenging arrangements of ordered objects and novel objects
are provided throughout test scenarios. Bottles, various sized and shaped cups, a
screw driver, a banana, and a scissor are among the novel objects.

To assess the performance and generality of the proposed model, the following
metrices measurements were used, with the greater the value, the better.

(1) Average percent clearance: Over the n test runs, the average percent clear-
ance rate assesses the policy’s ability to complete the task by picking up
all objects in the workspace without failing for more than 10 times.

(2) The ratio of successful grasps in all grasp attempts per completion, which
assesses the grasping policy’s accuracy, is called the average percent grasp
success per clearance.

N _success ful grasp

Average % grasp success = * 100% (46)

~ Total number of trials

(3) The average grasp to push ratio is the number of successful grasps divided
by the number of successful pushes in each test case’s complete run tests.

N_grasp success

Average grasp to push ratio= * 100% (47)

N_push success

where, N_successful grasp is number of successful grasps,
N_push success is the number of successful pushes.

4. Result and discussion

In this section, the findings through this work including the training and the test-
ing sessions are presented. After training the proposed model using self-supervised
deep reinforcement learning, a different set of test scenarios with different clutter
and novel objects are provided. Here, the performance of the proposed model in
a cluttered environment, testing over challenging well-ordered objects and novel
objects are presented.

4.1. Performance in cluttered environments

The results demonstrate the effectiveness of the proposed model in handling clut-
tered environments. Compared to traditional grasping-only policies, which achieved
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a grasping success rate of just 60%, the proposed model attained a significantly
higher success rate of 87%. This improvement is primarily due to the synergy be-
tween pushing and grasping actions. Pushing helps to create space around the target
object, allowing the robotic gripper to secure a better grasp. The use of rewards for
successful pushes further encourages this behavior, leading to a more efficient and
effective grasping strategy.

100%

80% +
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™
; 60% -
w
)
[¥]
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20% Proposgd model

—— SGD-without momentum
—— noreward for push
| grasping only policy
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Training steps/Iterations

Fig. 14. Grasping performance comparison of grasping only policy, no-reward for push, SGD-
without momentum and the proposed model

The above graph illustrates the grasping success rate of the grasping only policy,
no-reward for push, SGD-without momentum, and the proposed model. A lot of
researchers used the grasping only policy in clutter to grasp an object. In a cluttered
environment, the grasping success rate of the grasping only policy is unsatisfactory.
There should be room for the robotic gripper to successfully grasp an object in the
clutter. Also, there are researches that trained both pushing policy and grasping
policy but without reward for successful pushing policy. The grasping success rate
of the proposed model has shown an interesting performance.

The proposed model reached 80% grasping success rate at 1500 iterations and
the overall grasping success rate is 87%. This shows that in a clutter, synergizing
pushing policies with grasping improves the grasping performance. The pushing
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action is used to separate the clutter and to find room for the gripper. The purpose
of pushing action is to improve future grasping. Providing a reward for successful
pushes also improves a grasp success. The momentum in stochastic gradient descent
is used to create an inertia to accelerate the training in the direction of minimum
gradient. Momentum is used to increase the convergence rate of the training session.
As shown in Fig.14, the grasping only policy grasping success rate is low. In clutter,
it is recommended to use both pushing and grasping policies.
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Fig. 15. Grasping success rate and push then grasp success comparison between the proposed
model and SGD-without momentum

Here, the grasping performance and push then grasp success (dotted line) of the
proposed model, SGD-without momentum, and no-reward for pushing action are
presented. Over 3000 iterations of training, as it can be inferred from the above
graph, the proposed model performed best in both grasping success rate and push
then grasp success over the SGD-without momentum and no-reward for pushing
actions. In the graph, the dotted lines infer the grasping successes after successful
pushing actions. The grasping success rate of the proposed model has shown fast
convergence. As it can be inferred from Fig. 15 over 3000 iterations, the grasping
success rate of the proposed model, SGD-without momentum and no-reward for
pushing action is 87%, 79%, and 71% respectively.



Journal of Computational Science & Data Analytics (©) AASTU Press

Deep Reinforcement Learning Based Synergies Pushing and Grasping Policies . . . 55
100%

80% A
U
m
[
o 80% 7
wi
[
%]
(=}
=1
wi
a
W 40%
z
]

20% A

] _r‘J’ s —— Proposed model
.','{r rl —— S5GD-without momentum
P
- —— noreward for push
0 = T T T T T
0 500 1000 1500 2000 2500 3000

Training steps/iterations

Fig. 16. Grasping success rate and push then grasp success comparison between the proposed
model and SGD-without momentum

Here, the grasping performance and push then grasp success (dotted line) of the
proposed model, SGD-without momentum, and no-reward for pushing action are
presented. Over 3000 iterations of training, as it can be inferred from the above
graph, the proposed model performed best in both grasping success rate and push
then grasp success over the SGD-without momentum and no-reward for pushing
actions. In the graph, the dotted lines infer the grasping successes after successful
pushing actions. The grasping success rate of the proposed model has shown fast
convergence. As it can be inferred from Fig.15 over 3000 iterations, the grasping
success rate of the proposed model, SGD-without momentum and no-reward for
pushing action is 87%, 79%, and 71% respectively.

4.2. Randomly arranged objects

Increasing the number of objects from 10 objects to 26 objects during training is to
create more dense clutter. The model’s performance was evaluated through various
test scenarios, including random arrangements of objects, well-ordered challenging
configurations, and novel objects. In randomly arranged environments, the model
showed a robust grasp success rate, indicating its ability to generalize well to un-
seen configurations. Specifically, the model completed 80 test cases with a grasp
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success rate of 50.5% and a grasp-to-push ratio of 77.1%. This indicates that even
in highly cluttered scenes, the model can effectively manage the environment to
achieve successful grasps.

The randomly arranged more cluttered objects used during testing the general-
ization performance of the trained model are presented in Appendix-A: Fig.A.2.

Table 2. Simulation results for random arrangements of 26 objects

Test-cases Completion | Grasp Grasp to push
success ratio

Random 80 % 50.5 % 77.1 %

arrangements

As can be inferred from Table 3, the generalizability of the proposed trained
model to a more cluttered environment is interesting. The proposed model can
grasp objects in clutter by synergizing push policy with grasp policy.

4.3. Challenging well-ordered configurations

The model’s performance was further tested with three difficult test cases featuring
well-ordered configurations of objects. These test cases, designed to simulate chal-
lenging gripping conditions, included objects stacked closely together and placed
in orientations that complicate grasping. Despite these difficulties, the proposed
model performed admirably. Test-case 00 showed a completion rate of 96.8%, with
a grasp success rate of 84.7% and a grasp-to-push ratio of 99.5%. Test-cases 01 and
02 also exhibited strong performance, with grasp success rates of 61.4% and 75.1%,
respectively.

Three difficult test cases with difficult clutter are provided. These configurations
are created by hand to simulate difficult gripping conditions and are not used in
the training process. Objects are stacked so close together in several of these test
cases, in such locations and orientations. A single isolated object is placed in the
workspace separately from the arrangement as a sanity check. Appendix-A contains
the challenging well-ordered configuration test cases from Fig.A.3-Fig.A.5.

Table 3. Evaluation metrices of well-ordered arrangements test cases

Test-cases Completion Grasp suc- | Grasp  to
cess push ratio
Test-case 00 96.8 % 84.7 % 99.5 %
Test-case 01 86.7 % 61.4 % 95.8 %
Test-case 02 96.8 % 75.1 % 100 %
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As shown from Table 4, the proposed model performs well for challenging con-
figuration of objects in the robot work-space where the arrangements are not seen
during the training session.

4.4. Generalization to novel objects

One of the most compelling aspects of the proposed model is its ability to generalize
to novel objects. In tests with novel objects, which included items such as bottles,
bananas, screwdrivers, and various sized cups, the model maintained high perfor-
mance. The grasp success rates for the three novel test cases were 73.9%, 65.4%,
and 95.8%, respectively. The completion rates and grasp-to-push ratios in these
tests also remained high, indicating that the model can effectively handle objects
with different shapes and sizes that were not part of the training set.

Simulation tests with novel objects that are more complex in shape than those
employed during training are undertaken. As shown in Appendix-A from Fig.A.6
to Fig.A.8, three separate test cases with different novel objects are provided.

Table 4. Simulation results for novel object arrangements

Test-cases Completion Grasp success | Grasp to push
rate ratio
Novel-test-case 00 74.1% 73.9 % 93.9 %
Novel-test-case 01 80 % 65.4 % 95.2 %
Nowel-test-case 02 100 % 95.8 % 100 %

Novel objects in the test were provided to understand the generalization of the
proposed trained model. These are different objects that have never been seen dur-
ing the training session. The objects include bottles, bananas, screwdriver, different
sized cups, fork, adjustable wrench.

This generalization capability is crucial for real-world applications, where robots
must handle a wide variety of objects. The ability to successfully grasp novel ob-
jects without additional training underscores the robustness and versatility of the
proposed model.

4.4.1. Discussion

The proposed method demonstrates significant improvements in robotic manipu-
lation within cluttered environments when compared to existing techniques as in
Table 6. Here is a detailed discussion of the performance metrics:

(1) Grasp Success Rate:
Our proposed method achieves an 87% grasp success rate, which is on
par with the best-performing existing technique from 2020 (87%) but sig-
nificantly outperforms most other methods, particularly those from earlier
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Table 5. Performance comparison with related works

Year | Action GPU Epochs| Time | Work | Ref | Comple-| Grasp Action
Area success | Effi-
tion ciency
2021 | Grasping| Nvidia 2500 | N/A | Clutter| [8] | 53.1 % | 62 % 51.4 %
RTX
2080
2020 | Grasping| N/A 7000 | N/A | Sparse | [9] | 100 % | 87 % 95.2 %
2020 | Pushing | Titan X | 10000 | 34 Clutter | [10] | 93.7 % | 76 % 84 %
and (12GB) hrs
grasp-
mg
2020\ Pick GeForce | 3000 | 10 Clutter | [11] | 100 % | 74.3 % | 92 %
and GTX- hrs
place 1660711
2018 | Pushing | NVIDIA | 2500 5.5 Clutter | [12] | 100 % 65.4 % | 59.7 %
and Titan X hrs
grasp-
mg
2022 | Pushing- | Nvidia 250 N/A | Clutter | [13] | 100 % | 83.5 % | 69 %
grasping | GTX
10807T%
2024 | Proposed| DELL 3000 | 5 Clutter | N/A| 100 % | 87 % 91 %
E2417TH hrs
desktop

years, such as the 62% success rate achieved in 2021 by Al-Shanoon et al.
and the 65.4% from 2018 by Zeng et al.
Action Efficiency:

The proposed approach shows an action efficiency of 91%, which is
slightly lower than the highest efficiency of 95.2% reported in 2020 by
Joshi et al. However, it surpasses many other methods, indicating a more
balanced and efficient action strategy within cluttered environments. This
is a notable improvement over methods such as Wu et al.’s 2023 approach,
which reported an efficiency of 54.1%.

Completion Rate:

The proposed model consistently achieves a 100% task completion
rate, indicating robust performance in complex, cluttered scenarios. This
matches the performance of several other top methods from 2020 to 2024,
showing that the proposed method is reliable for practical applications in
industrial settings.
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(4) Hardware and Computational Efficiency:

The proposed method utilizes a DELL E2417H desktop, which is more
accessible and cost-effective compared to high-end GPUs like the Nvidia
RTX 2080 Ti or Titan X used in other studies. Despite this, it main-
tains competitive performance, highlighting its efficiency and potential for
broader application.

(5) Training time and Epoch:

Our proposed model’s training time takes about 5 hours for 3000 epochs.
This shows that with less training time and epoch, our proposed model
shows an interesting performance over other works.

5. Conclusion and future works

Grasping an object in a cluttered scene has been a subject of researchers, yet a
challenging and less explored. It’s tough to grasp an object in a cluttered environ-
ment without using non-prehensile motions. In this work, to improve grasping in a
cluttered environment, a non-prehensile action, namely pushing was adopted. Us-
ing available resources, the proposed model has improved grasping an object in the
clutter by synergizing pushing and grasping actions. The proposed model grasping
success rate has achieved 87%. The proposed model has shown grasping success rate
improvement of 27%, 16%, and 8% over grasping only policy, no-reward for pushing
policy, and SGD-without momentum strategies respectively. So, it can be concluded
that synergizing pushing and grasping policies improve the grasping performance of
objects in a cluttered scene. Giving a reward for successful pushing action encour-
ages synergizing the pushing and grasping actions for improved grasping success
rate. Also, SGD with momentum optimization improves the convergence rate of
training. The proposed framework has also shown a great generalization skill for
randomly arranged dense clutter, challenging well-ordered and novel objects.
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Appendix: The proposed model training and test cases

Fig. A.1. Training objects ~ Fig.A.2. Random configuration Fig.A.3. test-case-00

Fig. A.4. Test-case-01 Fig.A.5. Test-case-02 Fig. A.6. Novel-test-case-00

Fig.A.7. Novel-test-case-01 Fig.A.8. Novel-test-case-02

RGB-D

Fig. A.9 URS5-Environment interaction of the proposed model
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