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This paper presents deep reinforcement learning-based synergy between pushing and

grasping systems to improve the grasping performance of the UR5 robot in a cluttered
scene. In robotic manipulations, grasping an object in a clutter is fundamental yet a chal-

lenging activity for industrial applications. This is because numerous studies focused on

improving grasping performance in cluttered environments using either a grasping-only
policy or pushing and grasping without incorporating a pushing reward. Additionally,

some research has been limited to using similar objects, such as cubes. This paper for-

mulated the mathematical modeling of the universal robot manipulator. The proposed
model involves training two fully-connected convolutional neural networks that transfer

visual observations of the scene to a dense pixel-wise sample of end-effector orientations

and positions for each pushing and grasping action. A fixed RGB-D camera is used to
take the raw images of the scene and generate a heightmap image. Before feeding the

heightmap image to the fully convolutional network, it is rotated by 36 different angles

to generate 36 pixel-wise Q-value predictions. Both pushing and grasping networks are
self-supervised by trial and error from experience and are trained together in a deep

Q-learning algorithm. Successful grasps have a reward of 1, while successful pushes have
a 0.5 reward value. But unsuccessful actions have a reward of 0 value. The proposed

policy learns pushing motions to improve future grasping in a cluttered scene. The ex-

periment demonstrates that the proposed model can successfully grasp objects with an
87% grasp success rate while grasping only policy, no-reward for pushing policy, and

stochastic gradient without momentum is 60%, 71%, and 79% respectively. Further, it

has been demonstrated that the proposed model is capable of generalizing to randomly
arranged cluttered objects, challenging arrangements, and novel objects.

Keywords: Deep reinforcement learning, synergy, robotic grasping, cluttered scene, Q-

value, UR5.

1. Introduction

Robots were created to aid or replace humans by performing tedious and risky

jobs that humans either do not want to undertake or are unable to execute due

to physical limits imposed by harsh conditions [1]. Robotic arms are automated

electromechanical devices designed to carry out specific tasks [2]. Applications of

robotics are widely available in our daily life ranging from small household robots

to large manufacturing industries.

The Universal Robots company product, UR5 a six degree of freedom is widely

used in most research areas due to their lightweight, speed, easy to program, flex-

ibility, and safety. All of its six revolute joints contribute to the transformational

and rotational movements of its end effector [3].
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Artificial intelligence (AI) has become a critical component in the subject of

robotics. The definition of AI varies depending on its application and field, but

[4] defines it as the creation of an intelligent agent that can interact with the

environment and take actions to maximize its success, in which the agent acts

intelligently to reach the optimal result.

A biologically inspired engineering model, artificial neural network (ANN) con-

sists of numerous single units called artificial neurons that are coupled with coef-

ficients (weights) to form the neural structure [5]. It contains devices with many

inputs and one or more outputs. An artificial neural network is consisting of a large

number of fundamental processing pieces that are linked and layered together.

Deep neural network learning is a well-known field in the family of machine

learning, with its excellent achievement in a variety of domains ranging from classi-

cal computer vision tasks to many other practical applications. Deep-learning based

methods have achieved comparable to, and in some cases outperforming human ex-

pert performance. Deep learning has enhanced data processing, making decisions,

data analyzing and manipulation [1].

A type of machine learning in which the UR5 learns optimal behavior through

experience by trial-and-error interactions with the environment in order to maxi-

mize its performance is called reinforcement learning. A reinforcement learning UR5

is not informed which actions to take, instead, it must try them all to see which

ones offer most reward. It chooses behaviors based on previous experiences as well

as tries now options with the goal of maximizing the total reward [6].

The hybrid between deep learning and reinforcement learning is deep reinforce-

ment learning. The robot learns from its actions similar to the way humans can learn

from experience. The robot learns complex features by trial-and-error interactions

with the environment so as to optimize its performance over time.

A robotics problem is formalized by defining a state and action space, and the

dynamics which describe how actions influence the state of the system. The state

space includes internal states of the robot as well as the state of the world that is

intended to be controlled. Quite often, the state is not directly observable–instead,

the robot is equipped with sensors, which provide observations that can be used

to infer the state. The goal may be defined either as a target state to be achieved,

or as a reward function to be maximized. We want to find a controller, (known

as a policy in reinforcement learning), that maps states to actions in a way that

maximizes the reward when executed [7].

2. Related works

For effective and efficient object manipulation, an industrial robot manipulator

must be able to sense and interact with its surroundings. Despite extensive re-

searches, robotic grasping in a cluttered environment remains a difficult challenge,

as do many other robotic manipulations. Using deep reinforcement learning, several

distinct approaches to grasping in a cluttered environment have been developed in
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recent years.

A scalable visual grasping system [8] proposes a robotic grasping strategy based

on the model-free deep reinforcement learning, named Deep Reinforcement Grasp

Policy (DRGP). The proposed system requires little training time and limited sim-

ple objects in simulation but generalizes well to novel objects in a real-world envi-

ronment. A perception network employs a convolutional neural network to translate

visual data to grasp action in which dense pixel-wise Q-values indicate the position

and orientation of the robot’s primitive action. Grasp success rate reaches 93% on

a single arrangement unknown object, 70% on six unknown objects in a crowded

situation, and 62% on seven objects in crowded situations. The methodology is

based on only grasping policy as a result, it fails to perform well in a cluttered

environment. With out a non-prehensile action (pushing), it is difficult to grasp an

object in a dense scene.

In [9], a robotic grasp-to-place method that can grasp objects in sparse and clut-

tered scene was presented. The main achievement of this study is that it can handle

both picking and placing using raw RGB-D images and an explicit framework. The

RGB-D camera was utilized to produce heightmaps at the robot grasp-workspace

by capturing RGB-D images of the scene and 3D point cloud information. The

heightmap is rotated by 36 different angles before being fed into a dense connected

convolutional network (DenseNet121) to produce 36 pixel-wise Q-value maps pre-

dictions. The suggested model has 77.4% grasp efficiency and 74.3% grasp success

rate, respectively and 98.42% place success rate. The paper proposes a pick and

place robot in a cluttered environment, but it failed to provide a solution for better

grasping an object in the cluttered environment. The grasping process is not en-

hanced by the non-prehensile (push) action which resulted in low grasping efficiency

and grasp success rate of an object. The model also failed to provide tests for novel

objects.

In [10], a deep reinforcement learning-based technique for tackling the robotic

grasping issue using Visio-motor feedback was proposed. The suggested system is

a visual servoing method that perceives the environment including the objects of

interest using a multi-view camera setup. The model is made up of observed data

from the overhead depth camera and wrist RGB camera, as well as current motor

position, all of which are sent into Grasp-Q-Network, which yields grasp success

probability. The model tested in both a Baxter Gazebo simulated environment and

on a real robot. Even though adopting a multi-view model increases grasping accu-

racy in comparison to a single-view model, the training experiment was performed

only with three regular shaped colored objects; sphere, cylinder, and cube. This

study highlights the efficacy of reinforcement learning in sparse settings, though it

lacks detailed exploration in highly cluttered scenarios.

The paper presented in [11] used both Schedule for Positive Task (SPOT) reward

and the schedule for Positive Task (SPOT)-Q reinforcement learning algorithms,

which resulted in efficient learning multi-step block manipulation tasks in both sim-

ulation and real-world environments. The Schedule for Positive Task (SPOT) incen-
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tive system works on the principle that actions that advance overall task progress

rewarded proportionally to the amount of progress made while actions that reverse

progress are not rewarded. By recording stack height or row length, SPOT can

calculate task progress (TP). The heightmap is rotated by 16 distinct angles which

is then fed into a Dense Network (DenseNet-121) to yield predictions of 16 pixel-

wise Q-value maps. The paper achieved a grasp success rate of 76% in simulation

and 69% in real training on stack of 4 cubes. The proposed system failed to give

a reward for pushing action that leads to lower grasp success. As successful push-

ing actions are not rewarded, the contribution of pushing for improving grasping

is minimum. The proposed system failed to give a reward for successful pushing

action that leads to a lower grasp success. Without a push reward, the robot will

not learn push policies.

To grasp unseen target object in a clutter trained by self-supervision in sim-

ulation was presented in [12]. The method employed three fully connected convo-

lutional neural networks, DenseNet-121, for feature extraction of color, depth and

the target object, which demands high computational cost. It has low grasping suc-

cess rate and performs more motion. This is because it seeks to grasp the object

directly without separating the objects. It tends to push the cluttered environment

after multiple continuous grasp failures. Grasping is also limited to a target, goal

oriented single object.

The paper presented in [13] employs deep Q-learning for gripping policies and

pushing for applications involving crowded. Through model-free deep reinforcement

learning, this research proved that it is possible to uncover and learn synergies be-

tween push and pick in a clutter. Before feeding the heightmap image into the

DenseNet-121 network to generate 16 Q-value predictions, it is rotated in 16 dif-

ferent angles. The model grasping performance for the developed system achieved

83% over 2500 episodes. The paper’s key weakness is that it repeatedly pushes an

object out of the workspace because pixel-wise depth heightmap image differencing

(PDD) approach is not employed to assure success push. A second limitation is that

the system has trained and tested with only blocks.

3. Material and methods

3.1. Experimental setup

The experiments were conducted using a UR5 robotic arm from Universal Robots,

equipped with a two-finger parallel gripper. An RGB-D camera was fixed in the

environment to capture the scene and generate height map images. These images

were used as inputs for the neural networks.

The experimental setup involves using a UR5 robotic arm to test and validate

the proposed robotic manipulation model. The UR5 robot is a versatile and widely

used industrial robot known for its precision and flexibility, making it ideal for

tasks involving grasping and manipulation in cluttered environments. The setup

is designed to evaluate the model’s performance in various scenarios, including
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randomly arranged clutter, well-ordered configurations, and interactions with novel

objects.

Hardware components

(1) UR5 Robotic Arm:

Model: Universal Robots UR5.

Degrees of Freedom: 6.

Payload: 5 kg.

Reach: 850 mm.

Repeatability: ±0.1 mm.

(2) End Effector:

Type: RG2 parallel jaw gripper.

Grip Force: 20-235 N.

Grip Stroke: 0-85 mm

(3) Vision System:

Camera: Intel RealSense Depth Camera D435.

Resolution: 640 x 480 at 30 fps.

Depth Range: 0.2-10 m.

(4) Computing System:

Processor: Intel Core i7.

GPU: NVIDIA Quadro P2000 Intel(R) Xeon(R)

RAM: 32 GB.

Software Components

(1) Operating System: Ubuntu 18.04 LTS.

(2) Robotics Middleware: Virtual Robot Experimentation Platform (V-REP).

(3) Control Interface: CoppeliaSim VR interface with the UR5 robot.

(4) Simulation Environment: CoppeliaSim simulation.

(5) Machine Learning Framework: PyTorch for model training and deployment.

Experimental Procedure

(1) Environment Setup:

• The robot is placed in a controlled test area with a flat, non-reflective

surface to minimize visual noise.

• Objects for manipulation are randomly placed within the robot’s

workspace to simulate cluttered environments.

• A mix of known and novel objects is used to evaluate the model’s

adaptability.

(2) Calibration:

• The vision system is calibrated using standard calibration techniques

to ensure accurate depth perception.
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Fig. 1. UR5 robotic arm [14]

• The end effector is calibrated to ensure precise gripping force and

stroke control.

(3) Task Execution:

• The robot is programmed to perform a series of grasping tasks, start-

ing with randomly arranged clutter.

• The tasks are repeated with well-ordered object configurations and

novel objects to test the model’s adaptability and performance con-

sistency.

• Each task involves identifying the object, planning a grasp, and exe-

cuting the grasp.

3.2. UR5 mathematical modeling and deep reinforcement

algorithm

3.2.1. UR5 mathematical modeling

Six revolute joints make up the UR5 robotic arm. Base, Shoulder, Elbow, Wrist1,

Wrist2, and Wrist3 are the names of these joints. The shoulder and elbow joints

rotate perpendicular to the base joint. Long linkages connect the shoulders, elbows,

and base joints [3].

3.2.2. D-H Representation of Forward Kinematic Equations of UR5

The UR5 robot’s kinematics can be studied using the D-H representation. To effi-

ciently control the end-effector with regard to the base, the relationship between the
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coordinate frames attached to the end-effector and the base of the UR5 robot must

be discovered. This is accomplished by recursively describing transformations of the

coordinates between the coordinate frames connected to each link and yielding an

overall description.

Fig. 2. Schematic and frames assignment of UR5

Table 1. D-H parameters of the UR5

Link, i ai αi di θi
1 0 π/2 0.0891 θ1
2 0.425 0 0 θ2
3 0.39225 0 0 θ3
4 0 π/2 0.10915 θ4
5 0 −π/2 0.09456 θ5
6 - - 0.0823 θ6

Using the definition of the transformation matrix of a robotic arm, the trans-

formation matrix from the base to the end effector of the UR5 robot is in the form
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of:

[
0
1T (θ1)

1
2T (θ2)

2
3T (θ3)

3
4T (θ4)

4
5T (θ5)

5
6T (θ6)

]
=




c1 0 s1 0

s1 0 −c1 0

0 1 0 0.089

0 0 0 1



c2 −s2 0 −0.425c2
s2 c2 0 −0.425s2
0 0 1 0

0 0 0 1



c3 −s3 0 −0.39c3
s2 c2 0 −0.39s3
0 0 1 0

0 0 0 1



c4 0 s4 0

s4 0 −c4 0

0 1 0 0.109

0 0 0 1



c5 0 −s5 0

s5 0 c5 0

0 −1 0 0.09465

0 0 0 1



c6 −s6 0 0

s6 c6 0 0

0 0 1 0.0823

0 0 0 1




(1)

So, the transformation of the UR5 robot from the base to the end-effector is the

post-product of all the six transformation matrices.

0
6T (θ1, θ2, θ3, θ4, θ5, θ6) =

0
1T (θ1)∗12T (θ2)∗23T (θ3)∗34T (θ4)∗45T (θ5)∗56T (θ6) =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (2)

The forward kinematics of the UR5 robot orientation would be obtained from

the first three columns of the 0
6T in Eq. (2) as:nx ox ax

ny oy ay
nz oz az

 =

 s1s5c6 + c1c234c5c6 + c1s234s6 −c1s234c6 − s1s5s6 − c1c234c5s6 s1c5 − c1c234
s1c234c5c6 − c1s5c6 − s1s234s6 −s1s234c6 − s1c234c5s6 + c1s5s6 −c1c5 − s1c234

s234c5c6 + c234s6 c234c6 − s234c5s6 −s234s5

 (3)

And the forward kinematics of the robot position would easily be obtained from

the fourth column of the 0
6T in Eq. (2) as:


px=d5c1s234+d4s1−d6c1s234+a2c1c2+d6c5s1+a3c1c2c3−a3c1s2s3
py=d5s1s234−d4c1−d6s1c234+a2c2c1−d6c1s5+a3c2c3s1−a3s1s2s3
pz=d1−d6s5s234+a3s23+a2s2−d5c234

(4)

Where, s234 stands for the sin(θ2+θ3+θ4) and c234 stands for the cos (θ2+θ3+θ4) .

3.2.3. Inverse Kinematics of the UR5

The goal of inverse kinematics is to discover the joint angles vectors that will cause

the end effector to achieve a particular goal state. The inverse kinematic equation

calculates the joint angles θ1−θ6 based on a desired position and orientation of the

end-effector, specified as the transformation 0
6T . To describes position and orien-

tation of the UR5 robot manipulator in the inverse kinematics solution, all angles

are restricted as
[
θi1, . . . , θ

i
6

] T ∈ [0; 2π), such that satisfies Eq (2). In this work,

geometric method was used to solve the inverse kinematics of the UR5 robot.
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Fig. 3. Geometry of the UR5 for finding θ1

The wrist, P5, is considered from frame 0 and frame 1, respectively, in order to

determine θ1. The rotation from frame 0-to-1, θ1, should, intuitively, equal the sum

of the rotations from 0 to 5 and 5-to-1. The angle φ1 can be found by examining

the triangle with sides 0P5y and 0P5x.

φ1 = tan−1(
0P5y

0P5x
) (5)

The angle φ2 is found by examining the rightmost triangle with φ2 as one of

the angles. Two of the sides have lengths d4 and |0P5xy|:

φ2 = ±cos−1(
d4

|0P5xy|
) = ±cos−1(

d4√
(0P5y)2 + (0P5x)2

) (6)

The desired angle θ1 can now be found simply as:

θ1 = φ1 + φ2 +
π

2
= tan−1(

0P5y

0P5x
)± cos−1(

d4√
(0P5y)2 + (0P5x)2

) +
π

2
(7)
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Fig. 4. UR5 robot configuration to determine θ5

The way to figure out θ5 now is to notice that 1P6y is exclusively dependent on

θ5. In Fig.4, y1 can be traced backwards to see that 1P6y is given by:

1P6y = −d4 − d6cos(θ5) (8)

The y-component of 1P6, 1P6y can also be expressed by looking at 1P6 as a

rotation of 0P6 around z1.

1P6 = 0
1R

T .0P6 ⇒

1P6x

1P6y

1P6z

 =

 c1 s1 0

−s1 c1 0

0 0 1

0P6x

0P6y

0P6z

 (9)

Using the second row of Eq (9),

1P6y = −(s1)0P6x + (c1)0P6y (10)

Equating Eqs (8) & (10),

cos(θ5) =
d4 − s10P6x + (c1)0P6y

d6

θ5 = ±cos−1(
d4 − s10P6x + (c1)0P6y

d6
) (11)

The two solutions for θ5 indicates to moving the wrist “down” or “up”.
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Fig. 5. Geometry used to determine azimuth angle θ6

The axis −6Y1 expressed in spherical coordinates with azimuth −θ6 and po-

lar angle θ5. 6Y1 is denoted as y1 in the Fig.5. −6Y1 is converted to Cartesian

coordinates by transforming it from spherical coordinates.

6Y1 = [−s5c6 s5s6 − c5]T (12)

It could be identified that 6Y1 is given as a rotation of θ1 in the (x, y) plane of

frame 0.

6Y1 = −6X0sin(θ1) + 6Y0cos(θ1)⇒ 6Y1 =

−6X0xsin(θ1) + 6Y0xcos(θ1)

−6X0ysin(θ1) + 6Y0ycos(θ1)

−6X0zsin(θ1) + 6Y0zcos(θ1)

 (13)

From Eqs (12) & (13):

−s5c6s5s6

−c5

 =

−6X0xsin(θ1) + 6Y0xcos(θ1)

−6X0ysin(θ1) + 6Y0ycos(θ1)

−6X0zsin(θ1) + 6Y0zcos(θ1)

 (14)

Using the first and the second rows of Eq (14):

c6 =
6X0xsin(θ1)− 6Y0xcos(θ1)

s5
(15)

s6 =
6Y0ycos(θ1)− 6X0ysin(θ1)

s5
(16)
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Hence

θ6 = tan−1 6Y0ycos(θ1)− 6X0ysin(θ1)

6X0xsin(θ1)− 6Y0xcos(θ1)
(17)

If the denominator s5 = 0, then θ6 is undetermined. As a result, as illustrated

in Fig.5. (b), the joint axes 2, 3, 4, and 6 are aligned. Because the axes 2, 3, and 4

can rotate the end-effector around Z6 without moving it, the 6th joint is no longer

needed. In this situation, θ6 can be set to any number. The remaining three joints

(2, 3, and 4) are now examined to find the remaining angles θ2, θ3, θ4.. Their joint

axes are parallel.

Fig. 6. Joint 2, 3, and 4 together constitutes a 3R planar manipulator

As 0
1T ,

4
5T,, and

5
6T are all known at this point, 1

4T can be determined easily.

The above picture shows this transformation in the x; z-plane of frame 1. Using the

cosine law;

|1P4xz|2 = (−a2)2 + (−a3)2 − 2(−a2)(−a3)cos(φ3) (18)

φ3 = ±cos−1(
(a2)2 + (a3)2 − |1P4xz|2

2(a2)(a3)
) (19)

From the diagram shown in Fig.6 above,

θ3 = π − φ3 = π ± cos−1(
(a2)2 + (a3)2 − |1P4xz|2

2(a2)(a3)
) (20)
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The two answers refer to ”elbow move up” and ”elbow move down,” respectively.

When the distance to the 4th joint is greater than |a2 + a3| or less than |a2− a3|,
there are no solutions. When a2 = a3, there is a singularity, when θ3 = π, making

θ2 arbitrary. θ2 can be found by inspecting the Fig.6 above:

φ1 = tan−1(− 1P4z

1P4x
) (21)

And also using sine law,

φ2 = sin−1(
−a3sin(φ3

|1P4xz|
) (22)

And sin (φ3) = sin (π − θ3) = sin(θ3)

Then, θ2 can be expressed as;

θ2 = φ1 − φ2 = tan−1(−1P4z

1P4x
)− sin−1(

−a3sin(θ3)
|1P4xz|

) (23)

The angle θ4 is the angle from X3 to X4 measured about Z4.

From the transformation matrix, 3
4T , 3X4:

θ4 = tan−1(
3X4y

3X4x
) (24)

3.2.4. Dynamic Modelling of the UR5

The dynamical model of UR5 is represented by using the Euler-Lagrange method.

The difference between the manipulator’s kinetic energyK and the potential energy

P is the Euler-Lagrange. The Lagrangian L can be given by:

L = K − P (25)

Where, the kinetic K and the potential energy P of the UR5 robot are:

K =
1

2

6∑
i=1

(miv
T
i vi + θ̇Ti Iiθ̇) (26)

P =

6∑
i=1

gT rcimi (27)

Where, mi is the mass of link i, inertial matrix is Ii calculated in a coordinate

frame parallel to frame i with its origin at the center of mass, vi is the linear velocity

and θ̇i is the angular velocity, g is inertial frame vector in the direction of gravity

and the vector rci gives the center of mass of link i coordinates.
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Having the Lagrangian of the UR5 is, equations of motion can be determined

using the Euler-Lagrange equation, which is shown as follow:

d

dt
(
∂L

∂(̇θ)i
)− ∂L

∂θi
= τi (28)

Where, τi is the sum of external torques for a rotational motion and i=1, 2...6,

θ̇i =
∂θi
∂t .

According to Lagrangian method, the following equation can be used to deter-

mine the dynamic model of the UR5 robot.

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + fv θ̇ + Fcsign(θ̇) = Bτm (29)

Where,θ = [θ1, θ2, . . . , θ6]
T are independent joint coordinates vector, M(θ)is

the symmetric positive definite inertial mass matrix of the system, C
(
θ,θ̇

)
is the

Coriolis and centrifugal terms matrix, G (θ) is the gravity terms vector while τ is

the control vector. Vector τm includes motor torques, and B indicates distribution

force matrix. The vector of Coulomb friction forces Fc, as well as viscous joint

friction coefficients diagonal matrix fv [15].

3.2.5. UR5 Trajectory Planning

Consider one of the joints that is θi at the start of the motion segment at time ti and

that want to change to a new value of θf at time tf . One method is to design the

trajectory with a polynomial so that the initial and final boundary conditions match

what is already known, specifically that θi and θf are known and the velocities and

the accelerations at the start and end of the motion segment are zero or other

known values. The fifth order trajectory can be given by:

θ(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 (30)

θ̇(t) = c1 + 2c2t+ 3c3t
2 + 4c4t

3 + 5c5t
4 (31)

θ̈ (t) = 2c2 + 6c3t+ 12c4t
2 + 20c5t

3 (32)

Where, c0, c1, c2, c3, c4, and c5 are constants that has to be determined

based on the boundary conditions, θ (t), θ̇ (t), and θ̈ (t) are the angular position,

velocity and acceleration of the joint respectively.
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3.3. Data collection

The dataset consisted of various objects including toy blocks of different shapes and

colors, as well as novel objects like bottles, bananas, screwdrivers, cups, forks, and

adjustable wrenches. The objects were arranged in three different configurations for

testing:

• Randomly arranged clutter.

• Challenging well-ordered configurations.

• Novel object configurations.

The state st of the proposed system is represented as an RGB-D heightmap im-

age of the scene at time t. The RGB-D images from a fixed-mount RGB-D camera

is taken, project the data into a 3D point cloud, then back-project orthographically

upwards in the gravity direction using a known extrinsic camera parameter to cal-

culate both color (RGB) and height-from-bottom (D) channels heightmap images.

The RGB-D camera’s additional depth information is critical for robots that inter-

act with a three-dimensional environment. The working environment area covered

a 448 by 448 mm tabletop surface.

Working with raw heightmap pictures, which are 224 by 224 pixel RGB-D im-

ages, can be time- consuming and memory-intensive [16]. Normalization of input

data is a critical step that assures that each input heightmap has a consistent data

distribution. Convergence of the deep neural network is accelerated as a result of

this. heightmap normalization in a heightmap image is accomplished by subtracting

the mean from each pixel and dividing the result by the standard deviation.

The input heightmap is rotated by 36 orientations θ, each of which corresponds

to a push or grasp action with distinct products of 10◦ angle from the original state,

before being sent to the densnet-121 to generate a set of 36 pixelwise Q-value maps

to make learning-oriented pushing and grasping actions easier.

3.4. Deep Reinforcement Learning

In deep reinforcement learning, the UR5 uses a deep neural network to learn com-

plex features and decides on its own what action to take by interacting with its

environment. The UR5 strives to discover the best decision-making method that

will allow it to maximize the rewards acquired over time through its experience.

As it allows the interaction process of reinforcement learning to be defined in

probabilistic terms, the Markov Decision Process serves as the theoretical founda-

tion for reinforcement learning. Representing all possible states that the UR5 could

find itself in by the set S = {s1, s2, s3, . . . , sn} and the set of actions that the

UR5 can execute to the system to translate from on state to the next state by

A = {a1, a2, a3, ..., am } is a common practice. At a given time t the UR5

chooses and performs an action at based on the optimal policy, π∗(st) and will

cause the state to change from st to st+1. In response to this transition of state

the environment gives a reward rt to the UR5. After receiving the rewardrt, the
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UR5 is in state st+1and performs the next actionat+1. This action will cause the

environment to change to state st+2. And that will be followed by the environment

granting the robot a reward rt+1, this process is repeated for each time step.

Fig. 7. Deep Reinforcement Learning (DRL) UR5-Environment interaction

The deep reinforcement learning problem is used to find the best policy

(π∗ : S → A) that maximizes the expected sum of future rewardRt =
∑T

i=t γ
i−tri

for performing an action over time horizon T and the discount factorγ ∈ [0, 1]

which accounts for degree of the importance of the future rewards at the present

state. Deep Q-learning was used to train an optimal policy π∗(st) that choses

action from A = {a1, a2, a3, ..., am } that maximizes a state-action value

function Qπ(st, at), a measure of the reward for performing action at in state st at

time t.

The equation to determine the new update Q-value for state-action pair (s, a) at

time t is given by the Bellman equation;

Q (st, at)
New ← Q (st, at) + α (rt + γargmaxaQ (st+1, a)−Q (st, at)) (33)

where, a is a set of all future available actions, α is the learning rate (0 < α ≤ 1),

Q (st, at) is the current Q-value that has to be updated, rt is an immediate reward,

argmaxQ (st+1, a) is an estimation of the optimal future reward value.
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The two important aspects of the DQN algorithm, as proposed by [16], are the

use of a target network and experience replay. In this work, the target network φ′,

which is parameterized by θ− and is the same with the normal DQN except the

parameters are updated every C time steps from the DQN, was used. So that at

every C step, θ = θ− and kept fixed on all other steps. The target used by DQN at

the ith layer, is then:

yi = rt + γmaxaQθ− (st+1, a) (34)

Minimizing the temporal difference error δt of Qθ (st, at) to a fixed target value

between individual updates, yi is the objective of the learning. Therefore, the tem-

poral difference δt can be given by;

δt = |rt + γmaxaQθ− (st+1, a)−Qθ (st, at)| (35)

The main idea of the experience replay mechanism is that during the DQN

training process, the UR5 saves every experience tuple et at each time pointt,

et = {st , at , rt , st+1 }. The experience et would be used as training data to

update the DQN weights and the biases. The experience tuple is stored in the

replay memory M of length N, where M = {e1, e2 , e3 , . . . , eN } . A stochastic

rank-based prioritization for prioritizing experience was employed in this study so

that significant transitions might be replayed more frequently and so learned more

effectively. In particular, the probability of sampling transition i from the replay

buffer of size N is defined as;

p (i) =
Di

α∑N
k=0Dk

α
(36)

where Di > 0 denotes the priority of transition i, and the exponent α denotes

the amount of prioritizing employed. As a result, this value determines how much

prioritization is employed. In particular, the transitions i in the replay buffer is

ranked by the absolute value of temporal difference (TD) error.

Di = 1/rank(i) (37)

where, rank(i) is the rank of the transition i in the replay buffer sorted according

to the temporal difference error δt.

3.4.1. State representation

The state st of the proposed system is represented as an RGB-D heightmap image of

the scene at time t. The RGB-D images from a fixed-mount RGB-D camera is taken,

project the data into a 3D point cloud, then back-project orthographically upwards

in the gravity direction using a known extrinsic camera parameter to calculate both
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color (RGB) and height-from-bottom (D) channels heightmap images. The RGB-D

camera’s additional depth information is critical for robots that interact with a

three-dimensional environment. The working environment area covered a 448 by

448 mm tabletop surface.

Fig. 8. (a) RGB color image and (b) RGB heightmap

Working with raw heightmap pictures, which are 224 by 224 pixel RGB-D im-

ages, can be time- consuming and memory-intensive [16]. Normalization of input

data is a critical step that assures that each input heightmap has a consistent data

distribution. Convergence of the deep neural network is accelerated as a result of

this. heightmap normalization in a heightmap image is accomplished by subtracting

the mean from each pixel and dividing the result by the standard deviation.

The input heightmap is rotated by 36 orientations θ, each of which corresponds

to a push or grasp action with distinct products of 10 ◦ angle from the original

state, before being sent to the densnet-121 to generate a set of 36 pixelwise Q-value

maps to make learning-oriented pushing and grasping actions easier.

3.4.2. Densely Connected Convolutional Neural Networks

The deep Q-function was modelled as two feed-forward fully connected convolu-

tional networks (FCNs) for each motion primitive behavior; one for pushing net-

work, ∅p and another for grasping networks, ∅g by extending the vanilla deep Q-

networks (DQN) [16]. It has recently been demonstrated that to train deeper, more

accurate and more efficient features, the connection between layers next to the in-

put and close to the output of the convolutional network should be shorter [17].

The normalized and rotated heightmap is fed to the densenet-121 network.
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Fig. 9. A deep DenseNet-121 with four dense blocks

The DenseNet-121 is used in both the push and grasp neural networks. The

depth and color heightmaps are concatenated in channel-wise order after the

DenseNet-121 network, followed by two additional similar blocks with batch normal-

ization, nonlinear activation function (ReLU), and convolutional layers for feature

embedding. The pixel-wise state-action prediction value Q(st, at) then bilinearly up

sampled. The Q-value guess at pixel p depicts the expected reward of performing

primitive action at 3D position q(x, y, z, θ) where q maps from pixel p ϵ st, and

bilinear upsampling creates the same heightmap size and resolution as st of each

dense 36 pixel-wise map of Q-values [18].

3.4.3. Pushing Primitive Actions

The beginning points of a 10 cm push and the push direction in one of k=36

orientations are denoted by the push primitive actionψp, q(x, y, z, θ). The goal of

pushing primitive action is to learn pushes so that subsequent grasps can be made

with as few steps as feasible. Among all possible Q-values of the push Net ∅p, an
action with maximum Q-value is selected as a push action. The tip of a closed

two-finger gripper is used to physically execute the push action in this thesis.

push action, apush = argmaxQpush (st, at ) (38)



Journal of Computational Science & Data Analytics © AASTU Press

48 Shiferaw, B. A. et. al.

Fig. 10. DenseNet-121 Layers

Layers Output

layer

DenseNet-121

Convolution 112x112x64 BN, ReLU, 7x7 conv with stride=2, 3x3 Zero

padding

Pooling 56x56x64 3x3 max-pooling with stride=2

Dense Block 1 (DB1)

(6-layers)

56x56x256 BN, ReLU, [1x1 conv, 4 ∗ k fatures]x6, BN,
ReLU, [3x3 conv, k fatures]x6

Transition Layer 1 28x28x128 BN, ReLU, 1x1 conv with 4 ∗ k fatures, 2x2
average pooling with stride=2

Dense Block 2 (DB2)

(12-layers)

28x28x512 BN, ReLU, [1x1 conv, 4 ∗ k fatures]x12 ,

BN, ReLU, [3x3 conv, k fatures]x12

Transition Layer 2 14x14x256 BN, ReLU, 1x1 conv with 8 ∗ k fatures, 2x2
average pooling with stride=2

Dense Block 3 (DB3)

(24-layers)

14x14x1024 BN, ReLU,

[1x1 conv, 4 ∗ k fatures]x24, BN, ReLU,

[3x3 conv, k fatures]x24

Transition Layer 3 7x7x512 BN, ReLU, 1x1 conv with 16 ∗ k fatures, 2x2
average pooling with stride=2

Dense Block 4 (DB4)

(16-layers)

7x7x1024 BN, ReLU, [1x1 conv, 4 ∗ k fatures]x16,
BN, ReLU, [3x3 conv, k fatures]x16

Output Layer 1x1x1024 7x7 global average pooling

Fig. 11. Push Net (∅p) Q-values
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3.4.4. Grasping Primitive Actions

Similarly, among all possible Q-values of the grasp Net ∅g, a grasp action with

maximum Q- value is selected as best grasp action.

grasp action, agrasp = argmaxQgrasp (st, at ) (39)

Fig. 12. Grasp Net (∅g) Q-values

The predicted Q-values are represented as a heatmap, with hotter locations in-

dicating higher Q-values. White cycle in the heightmap image highlights the high-

est Q-value map, which correlates to the best grip action. q(x, y, z, θ) signifies the

median position of a top-down parallel-jaw grab in one of k = 36 orientations in

grasping primitive action. Both fingers attempt to move 3cm below q(x, y, z) during

a grip attempt before closing the fingers at the object’s point of grasp.

Action selection strategy is based on the maximum of the primitive motions (FCNs)

∅g and ∅p. The primitive action in the proposed model is the maximum of Q-values

prediction of the best push action and best grasp action Q-value predictions.

at = argmax [maxQpushing (st, at) ,maxQgrasping (st, at) ] (40)

At each iteration of the training session, the Huber loss function to train Q-

learning on FCNs is employed [13]. For the ith iteration, the Huber lose function

can be written as follows:

H(losei) =

 1
2

(
Qθi (si, ai)− yiθi

−
)2

if
∣∣∣Qθi (si, ai)− yiθi

−
∣∣∣ < 1,∣∣∣Qθi (si, ai)− yiθi

−
∣∣∣− 1

2 otherwise,
(41)
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where, yi = rt + γmaxaQ (st+1, a), θi denotes the parameters (weights and

biases) of the neural network at the ith iteration, θi
− signifies the target network

parameters between individual updates.

Fig. 13. Framework of pushing and grasping objects

The hyperparameters are tuned by an extensive technical trial and error exper-

imentation in simulation and the optimal learning rate (α) of 10−4, a momentum

coefficient (β) of 0.9, and a weight decay factor (λ) of 2−5 to train fully connected

convolutional neural networks are selected. During the training session, the robot

learned exploration using the epsilon greedy (ϵ-greedy) policy, which started at 0.5

and was decreased to 0.1 via exponential decay. The robot begins by exploring more,

and as it gains more experience via trial and error, it begins to exploit more what

it has learned. And future reward discount factor was set to a fixed amount of 0.5.

Over the training iterations, the gripping action’s learning performance improved

incrementally.

3.4.5. Reward modeling

A successful grasp is assigned a reward value as shown below:

Rg (st, st+1) = 1 (42)
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Grasp success is confirmed when the antipodal distance between gripper fingers

after a grasp attempt is greater than the threshold value of the antipodal distance.

While for a successful push, the reward value is modeled as:

Rp (st, st+1) = 0.5 (43)

If there is a detectable change in the environment, the push is successful. The

pixel-wise depth heightmap image differencing approach subtracts data from the

previous depth heightmap image from those of the current depth heightmap image,

to calculate the change sensed in the. Pixel-wise depth heightmap image differencing

(PDD) is calculated by subtracting the current state’s depth heightmap image from

the previous state’s depth heightmap image [18]. That is:

PDD =
∑
|st − st−1| (44)

The robot’s workspace was examined with various threshold values and discov-

ered that this may be determined by trying different experiments. Increasing the

threshold value implies that the robot can detect if there is only a considerable

change. When the threshold value is reduced, the robot can detect even minor

changes that the human eye might miss. If the pixel-wise depth heightmap image

differencing (PDD) exceeds the threshold value, a change observation is evaluated

with the acquired threshold value τ :

change detected =
∑
|st − st−1| > τ (45)

In general, if the PDD value is greater than the threshold value (PDD > τ) and

the grasping attempt is successful, a change has occurred. Aside from that, there

has been no change in the workspace.

3.4.6. Training scenarios

The proposed model experiment was performed using DELL E2417H Desktop with

NVIDIA Quadro P2000 Intel(R) Xeon(R) E-2124 CPU @3.30GHz with Ubuntu

18.04 LTS operating system, Python, PyTorch, OpenCV and V-REP.

VREP is a general-purpose robot simulation framework that is versatile, scal-

able, and powerful. Kinematics, dynamics, collision detection, motion planning, and

mesh-mesh distance calculation modules are among the various calculation mod-

ules in V-REP [19]. V-REP was utilized in conjunction with Bullet 2.83 Physics, an

open-source collision detection, soft body, and rigid body dynamics package [20].

It’s used to identify collisions, resolve collisions, and resolve other limitations.

In this investigation, a UR5 robot with an RG2 parallel jaw gripper was used.

The robot uses a stationary RGB-D camera to observe its surroundings. With a

pixel resolution of 640 x 480, the camera gathers picture and depth maps.
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During training, ten objects with various sizes and colors are dropped at random

into a 448x448 mm robot’s workspace/environment. By trial and error, the robot

learned to perform either a grip or a push action based on the highest Q-value.

Following the removal of all objects from the workspace, a new batch of 10 objects

was dropped at random for additional training. Data was collected constantly until

the robot had completed 3000 training iterations.

3.4.7. Testing scenarios

Randomly arranged, challenging arrangements of ordered objects and novel objects

are provided throughout test scenarios. Bottles, various sized and shaped cups, a

screw driver, a banana, and a scissor are among the novel objects.

To assess the performance and generality of the proposed model, the following

metrices measurements were used, with the greater the value, the better.

(1) Average percent clearance: Over the n test runs, the average percent clear-

ance rate assesses the policy’s ability to complete the task by picking up

all objects in the workspace without failing for more than 10 times.

(2) The ratio of successful grasps in all grasp attempts per completion, which

assesses the grasping policy’s accuracy, is called the average percent grasp

success per clearance.

Average % grasp success =
N successful grasp

Total number of trials
∗ 100% (46)

(3) The average grasp to push ratio is the number of successful grasps divided

by the number of successful pushes in each test case’s complete run tests.

Average grasp to push ratio=
N−grasp success

N−push success
∗ 100% (47)

where, N successful grasp is number of successful grasps,

N−push success is the number of successful pushes.

4. Result and discussion

In this section, the findings through this work including the training and the test-

ing sessions are presented. After training the proposed model using self-supervised

deep reinforcement learning, a different set of test scenarios with different clutter

and novel objects are provided. Here, the performance of the proposed model in

a cluttered environment, testing over challenging well-ordered objects and novel

objects are presented.

4.1. Performance in cluttered environments

The results demonstrate the effectiveness of the proposed model in handling clut-

tered environments. Compared to traditional grasping-only policies, which achieved
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a grasping success rate of just 60%, the proposed model attained a significantly

higher success rate of 87%. This improvement is primarily due to the synergy be-

tween pushing and grasping actions. Pushing helps to create space around the target

object, allowing the robotic gripper to secure a better grasp. The use of rewards for

successful pushes further encourages this behavior, leading to a more efficient and

effective grasping strategy.

Fig. 14. Grasping performance comparison of grasping only policy, no-reward for push, SGD-

without momentum and the proposed model

The above graph illustrates the grasping success rate of the grasping only policy,

no-reward for push, SGD-without momentum, and the proposed model. A lot of

researchers used the grasping only policy in clutter to grasp an object. In a cluttered

environment, the grasping success rate of the grasping only policy is unsatisfactory.

There should be room for the robotic gripper to successfully grasp an object in the

clutter. Also, there are researches that trained both pushing policy and grasping

policy but without reward for successful pushing policy. The grasping success rate

of the proposed model has shown an interesting performance.

The proposed model reached 80% grasping success rate at 1500 iterations and

the overall grasping success rate is 87%. This shows that in a clutter, synergizing

pushing policies with grasping improves the grasping performance. The pushing
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action is used to separate the clutter and to find room for the gripper. The purpose

of pushing action is to improve future grasping. Providing a reward for successful

pushes also improves a grasp success. The momentum in stochastic gradient descent

is used to create an inertia to accelerate the training in the direction of minimum

gradient. Momentum is used to increase the convergence rate of the training session.

As shown in Fig.14, the grasping only policy grasping success rate is low. In clutter,

it is recommended to use both pushing and grasping policies.

Fig. 15. Grasping success rate and push then grasp success comparison between the proposed

model and SGD-without momentum

Here, the grasping performance and push then grasp success (dotted line) of the

proposed model, SGD-without momentum, and no-reward for pushing action are

presented. Over 3000 iterations of training, as it can be inferred from the above

graph, the proposed model performed best in both grasping success rate and push

then grasp success over the SGD-without momentum and no-reward for pushing

actions. In the graph, the dotted lines infer the grasping successes after successful

pushing actions. The grasping success rate of the proposed model has shown fast

convergence. As it can be inferred from Fig. 15 over 3000 iterations, the grasping

success rate of the proposed model, SGD-without momentum and no-reward for

pushing action is 87%, 79%, and 71% respectively.
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Fig. 16. Grasping success rate and push then grasp success comparison between the proposed

model and SGD-without momentum

Here, the grasping performance and push then grasp success (dotted line) of the

proposed model, SGD-without momentum, and no-reward for pushing action are

presented. Over 3000 iterations of training, as it can be inferred from the above

graph, the proposed model performed best in both grasping success rate and push

then grasp success over the SGD-without momentum and no-reward for pushing

actions. In the graph, the dotted lines infer the grasping successes after successful

pushing actions. The grasping success rate of the proposed model has shown fast

convergence. As it can be inferred from Fig.15 over 3000 iterations, the grasping

success rate of the proposed model, SGD-without momentum and no-reward for

pushing action is 87%, 79%, and 71% respectively.

4.2. Randomly arranged objects

Increasing the number of objects from 10 objects to 26 objects during training is to

create more dense clutter. The model’s performance was evaluated through various

test scenarios, including random arrangements of objects, well-ordered challenging

configurations, and novel objects. In randomly arranged environments, the model

showed a robust grasp success rate, indicating its ability to generalize well to un-

seen configurations. Specifically, the model completed 80 test cases with a grasp
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success rate of 50.5% and a grasp-to-push ratio of 77.1%. This indicates that even

in highly cluttered scenes, the model can effectively manage the environment to

achieve successful grasps.

The randomly arranged more cluttered objects used during testing the general-

ization performance of the trained model are presented in Appendix-A: Fig.A.2.

Table 2. Simulation results for random arrangements of 26 objects

Test-cases Completion Grasp

success

Grasp to push

ratio

Random

arrangements

80 % 50.5 % 77.1 %

As can be inferred from Table 3, the generalizability of the proposed trained

model to a more cluttered environment is interesting. The proposed model can

grasp objects in clutter by synergizing push policy with grasp policy.

4.3. Challenging well-ordered configurations

The model’s performance was further tested with three difficult test cases featuring

well-ordered configurations of objects. These test cases, designed to simulate chal-

lenging gripping conditions, included objects stacked closely together and placed

in orientations that complicate grasping. Despite these difficulties, the proposed

model performed admirably. Test-case 00 showed a completion rate of 96.8%, with

a grasp success rate of 84.7% and a grasp-to-push ratio of 99.5%. Test-cases 01 and

02 also exhibited strong performance, with grasp success rates of 61.4% and 75.1%,

respectively.

Three difficult test cases with difficult clutter are provided. These configurations

are created by hand to simulate difficult gripping conditions and are not used in

the training process. Objects are stacked so close together in several of these test

cases, in such locations and orientations. A single isolated object is placed in the

workspace separately from the arrangement as a sanity check. Appendix-A contains

the challenging well-ordered configuration test cases from Fig.A.3-Fig.A.5.

Table 3. Evaluation metrices of well-ordered arrangements test cases

Test-cases Completion Grasp suc-

cess

Grasp to

push ratio

Test-case 00 96.8 % 84.7 % 99.5 %

Test-case 01 86.7 % 61.4 % 95.3 %

Test-case 02 96.8 % 75.1 % 100 %
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As shown from Table 4, the proposed model performs well for challenging con-

figuration of objects in the robot work-space where the arrangements are not seen

during the training session.

4.4. Generalization to novel objects

One of the most compelling aspects of the proposed model is its ability to generalize

to novel objects. In tests with novel objects, which included items such as bottles,

bananas, screwdrivers, and various sized cups, the model maintained high perfor-

mance. The grasp success rates for the three novel test cases were 73.9%, 65.4%,

and 95.8%, respectively. The completion rates and grasp-to-push ratios in these

tests also remained high, indicating that the model can effectively handle objects

with different shapes and sizes that were not part of the training set.

Simulation tests with novel objects that are more complex in shape than those

employed during training are undertaken. As shown in Appendix-A from Fig.A.6

to Fig.A.8, three separate test cases with different novel objects are provided.

Table 4. Simulation results for novel object arrangements

Test-cases Completion Grasp success

rate

Grasp to push

ratio

Novel-test-case 00 74.1 % 73.9 % 93.9 %

Novel-test-case 01 80 % 65.4 % 93.2 %

Novel-test-case 02 100 % 95.8 % 100 %

Novel objects in the test were provided to understand the generalization of the

proposed trained model. These are different objects that have never been seen dur-

ing the training session. The objects include bottles, bananas, screwdriver, different

sized cups, fork, adjustable wrench.

This generalization capability is crucial for real-world applications, where robots

must handle a wide variety of objects. The ability to successfully grasp novel ob-

jects without additional training underscores the robustness and versatility of the

proposed model.

4.4.1. Discussion

The proposed method demonstrates significant improvements in robotic manipu-

lation within cluttered environments when compared to existing techniques as in

Table 6. Here is a detailed discussion of the performance metrics:

(1) Grasp Success Rate:

Our proposed method achieves an 87% grasp success rate, which is on

par with the best-performing existing technique from 2020 (87%) but sig-

nificantly outperforms most other methods, particularly those from earlier
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Table 5. Performance comparison with related works

Year Action GPU Epochs Time Work

Area

Ref Comple-

tion

Grasp

success

Action

Effi-

ciency

2021 Grasping Nvidia

RTX

2080

2500 N/A Clutter [8] 53.1 % 62 % 51.4 %

2020 Grasping N/A 7000 N/A Sparse [9] 100 % 87 % 95.2 %

2020 Pushing

and

grasp-

ing

Titan X

(12GB)

10000 34

hrs

Clutter [10] 93.7 % 76 % 84 %

2020 Pick

and

place

GeForce

GTX-

1660Ti

3000 10

hrs

Clutter [11] 100 % 74.3 % 92 %

2018 Pushing

and

grasp-

ing

NVIDIA

Titan X

2500 5.5

hrs

Clutter [12] 100 % 65.4 % 59.7 %

2022 Pushing-

grasping

Nvidia

GTX

1080Ti

250 N/A Clutter [13] 100 % 83.5 % 69 %

2024 Proposed DELL

E2417H

desktop

3000 5

hrs

Clutter N/A 100 % 87 % 91 %

years, such as the 62% success rate achieved in 2021 by Al-Shanoon et al.

and the 65.4% from 2018 by Zeng et al.

(2) Action Efficiency:

The proposed approach shows an action efficiency of 91%, which is

slightly lower than the highest efficiency of 95.2% reported in 2020 by

Joshi et al. However, it surpasses many other methods, indicating a more

balanced and efficient action strategy within cluttered environments. This

is a notable improvement over methods such as Wu et al.’s 2023 approach,

which reported an efficiency of 54.1%.

(3) Completion Rate:

The proposed model consistently achieves a 100% task completion

rate, indicating robust performance in complex, cluttered scenarios. This

matches the performance of several other top methods from 2020 to 2024,

showing that the proposed method is reliable for practical applications in

industrial settings.
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(4) Hardware and Computational Efficiency:

The proposed method utilizes a DELL E2417H desktop, which is more

accessible and cost-effective compared to high-end GPUs like the Nvidia

RTX 2080 Ti or Titan X used in other studies. Despite this, it main-

tains competitive performance, highlighting its efficiency and potential for

broader application.

(5) Training time and Epoch:

Our proposed model’s training time takes about 5 hours for 3000 epochs.

This shows that with less training time and epoch, our proposed model

shows an interesting performance over other works.

5. Conclusion and future works

Grasping an object in a cluttered scene has been a subject of researchers, yet a

challenging and less explored. It’s tough to grasp an object in a cluttered environ-

ment without using non-prehensile motions. In this work, to improve grasping in a

cluttered environment, a non-prehensile action, namely pushing was adopted. Us-

ing available resources, the proposed model has improved grasping an object in the

clutter by synergizing pushing and grasping actions. The proposed model grasping

success rate has achieved 87%. The proposed model has shown grasping success rate

improvement of 27%, 16%, and 8% over grasping only policy, no-reward for pushing

policy, and SGD-without momentum strategies respectively. So, it can be concluded

that synergizing pushing and grasping policies improve the grasping performance of

objects in a cluttered scene. Giving a reward for successful pushing action encour-

ages synergizing the pushing and grasping actions for improved grasping success

rate. Also, SGD with momentum optimization improves the convergence rate of

training. The proposed framework has also shown a great generalization skill for

randomly arranged dense clutter, challenging well-ordered and novel objects.
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